Statistical Properties of the Method of Regularization with Periodic Gaussian Reproducing Kernel

نویسنده

  • Lawrence D. Brown
چکیده

The method of regularization with the Gaussian reproducing kernel is popular in the machine learning literature and successful in many practical applications. In this paper we consider the periodic version of the Gaussian kernel regularization. We show in the white noise model setting, that in function spaces of very smooth functions, such as the infinite-order Sobolev space and the space of analytic functions, the method under consideration is asymptotically minimax; in finite-order Sobolev spaces, the method is rate optimal, and the efficiency in terms of constant when compared with the minimax estimator is reasonably high. The smoothing parameters in the periodic Gaussian regularization can be chosen adaptively without loss of asymptotic efficiency. The results derived in this paper give a partial explanation of the success of the Gaussian reproducing kernel in practice. Simulations are carried out to study the finite sample properties of the periodic Gaussian regularization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Properties of the Method of Regularization with Periodic Gaussian Reproducing Kernel By

The method of regularization with the Gaussian reproducing kernel is popular in the machine learning literature and successful in many practical applications. In this paper we consider the periodic version of the Gaussian kernel regularization. We show in the white noise model setting, that in function spaces of very smooth functions, such as the infinite-order Sobolev space and the space of an...

متن کامل

The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations

In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...

متن کامل

A New Approach for Solving Volterra Integral Equations Using The Reproducing Kernel ‎Method

This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series.An iterative method is given to obtain the approximate solution.The conver...

متن کامل

A new reproducing kernel method for solving Volterra integro-dierential equations

This paper is concerned with a technique for solving Volterra integro-dierential equationsin the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernelmethod, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series. An iterative method is given toobtain the...

متن کامل

Fisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework

Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004